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Nikolai Gur’evich Chetaev was concerned with essential and difficult
problems of analytical dynamics, theory of stability of motion, mathe-
matical physics and the theory of differential equations.

In his scientific activity Chetaev was guided by the opinion that
*only those investigations have value which arise from applications...
and only those theories are actually useful which result from the con-
sideration of particular cases" (1).*

The investigations of Chetaev are distinguished by the rigor of the
formulation of the problem and the irreproachability of its solution,
Chetaev, following Liapunov, shared the opinion that *it is not permis-
sible to make use of doubtful reasoning as soon as we are concerned with
the solution of a definite problem, whether it be a problem of mechanics
or physics, provided only that the problem is accurately stated from the
point of view of the analysis. The moment it is stated the problem be-
comes a problem of pure analysis which is to be treated as such* (2).

Chetaev wrote his papers in the most concise style, here and there
even laconically. The reading of his papers, therefore, calls for serious
preparation and attention on the part of the reader. The difficulties in
reading his papers are the result, also, of the essential difficulties
of the problems considered.

In Chetaev’s investigations, analytical dynamics, stability of motion
and the theory of differential equations are closely interwoven. There-
fore, the subdivision of this survey into (A) analytical dynamics, (B)
theory of the stability of motion, (C) works on the qualitative methods

* Numbers in square brackets refer to the list of papers of N.G.Chetaev;
that follows this article; those in parentheses to the references.

(1) A.M. Liapunov, Pafnutii L°vovich Chebyshev. Soobshch. Kharkov.
matem. Obshch (Comm. of the Kharkov Math. Soc.). 6, 1885,

(2) A.M. Liapunov, Obshchaia zadacha of ustoichivosti dvizheniia
(General problem of the stability of motion). Kharkov, 1882; 2nd ed.
Moscow-Leningrad, 1035; Izdat. Akad. Nauk SSSR, 1948; Gos. Tekhn. Teor.
Izdat., Moscow-Leningrad, 1950.
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in the analysis and (D) works on the applied problems is of a conven-
tional nature only.

A. Anmalytical Dynamics

The works of Chetaev on analytical dynamics can be subdivided into
four sections: Gaussian principle and its modifications, equations of
dynamics in terms of group variables, stable trajectories in dynamics
and the optical-mechanical analogy.

1. Gaussian principle and its modifications. In 1829 Gauss published
a theorem which is known to-day as the principle of Gauss. This theorem
was formulated by him as follows: "The motion of a system of particles
constrained in any manner and subject to arbitrary influences remains at
any instant most consistent with that motion which the particles would
have acquired if they became free, i.e. the motion takes place under the
least possible constraint if by the measure of the copstraint at an
instant we understand the sum of the products obtained by multiplying
the mass of each particle by the square of its deviation from that posi-
tion which it would occupy if it were a free particle®.

The principle of Gauss attracted the attention of a series of
scholars. In particular, Appell and Delassus applied this principle to
the investigation of mechanical systems with nonlinear nonholonomic con-
straints. However, due to their definition of virtual displacements for
such systems, the principle of Gauss turned out to be inconsistent with
the principle of d’Alembert and Lagrange.

At Kazan’ E.A. Bolotov was interested in Gauss’ principle. In 1918 he
gave the most elegant treatment of this principle for linear nonholonomic
systems. Naturally, also, Chetaev’'s attention was attracted by this
principle.

In his paper [4 ], written while a student, Chetaev applied the Gauss
principle to the solution of the most difficult problem concerned with
the determination of that branch of the possible branches of equilibrium
along which the mass of a rotating liquid in the neighborhood of a point
of bifurcation will proceed.*

The principle of  d’ Alembert and Lagrange results from the axiom which
defines smooth constraints, and the contradiction between this principle
and that of Gauss arose in analytical mechanics in the process of the
growth of new ideas about constraints (passage from linear holonomic to

* This paper of Chetaev will be considered later.
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nonlinear) which required new ideas about virtual displacements. Chetaev
generalized this fundamental concept of analytical mechanics [14 ], and

this generalization permitted him to retain Gauss’ principle within the

framework of the d’Alembert and Lagrange principle.

Another merit of Chetaev, connected with Gauss’ principle, refers to
the development of a new approach to the problem of the release of
material systems from constraints. As is well-known, Gauss’ principle is
connected with a particular transformation of material systems, namely,
that one which releases material systems from all their constraints. In
mechanics many attempts have been made to generalize the Gaussian concept
of release, and at the same time also Gauss’ principle. Before Chetaev
two kinds of releases were considered: complete and partial releases. In
the first case, the system is set free from all of its constraints, while
in the second the system is released only partially of its constraints.
Chetaev proposed to consider as a release of a mechanical system any of
its transformations subjected to a definite mathematical algorithm (para-
metric release of material systems).

In paper [14 ] a mechanical system with k degrees of freedom is con-
sidered, subject to nonholonomic nonlinear constraints depending explic-
itly on time. The position of the system at the given inastant is deter-
mined by the orthogonal Cartesian coordinates (x;, Yi» 2z;) or by the
generalized independent coordinates q,, ..., q4. The velocities of the
particles in the actual motion of the system are

Ti’=ai (t' q.' q")' yi,’= bi (t' q.' qg')' zi’ zci (t, qg! q.I)
(i=1,...n8=1, ...,k

where a prime denotes the derivative with respect to time.

Chetaev defines the virtual displacements axiomatically by the ex-
pressions

361 abi 8(.'{
aa‘i = 2 aq.: Bql' Byl = 2 aq‘: Bql' le' = Z aq 7 SqS

where the 8q‘ are arbitrary infinitely small quantities.

Now, it is not difficult to show that for such a definition of the
virtual displacements Gauss’ principle follows from that of d’Alembert,
when introduced as a consequence of the axiom defining smooth constraints.

In fact, denote by dzi’, dyi', dzi' the changes in the velocities of
the particles of the system during an interval dt in the actual motionm,
and by 8x,", 8y;"y 81, the changes of the velocities in a conceivable
motion, calculated for the same coordinates and velocities at the instant
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t as in the actual motion, and finally by dx;”, dx;”, dz;” the changes of
the velocities in the released motion.

Then the principle of d’Alembert and Lagrange gives the equation

Agg+Agp— Ay =0

where Agy = L m, [(dz;—dz, ) (dy;"—By;" )2+ (dz;"—Bz;’)?] is the measure
for the deviation of the motion (d) from that of (5) during the time dt.
The quantities Ada and A&S are defined analogously.

From here immediately follows the well-known theorem of Mach for non-
holonomic nonlinear constraints

A g < Agp

This theorem contains Gauss’ principle as a particular case provided that
one takes for the motion (@) the motion of the system which is completely
released from the constraints.

In addition, another theorem is obtained which was first noticed by
Chetaev, namely
Ags < Agy

In this way Chetaev, introducing a new definition for the virtual dis-
placements, this definition being the most general of all the known de-
finitions up to the present date, solved one of the important problems of
analytical mechanics.

At the present time Chetaev’s definition of the virtual displacements
has received general recognition.

The paper by N.E. Kochin *On the release of mechanical systems", in
which Chetaev’s definition of the virtual displacements is used, has a
bearing on Chetaev’s work in connection with Gauss’ principle.

Next, Chetaev proposed an original modification of the Gaussian
principle.

He considers a mechanical system restricted by linear smooth con-
straints [25 ] and calculates for this system the work T, along the ele-
mentary cycle, consisting of the direct conceivable motion (according to
Gauss) in the field of forces acting on the system and of the inverse
motion in the field of forces, the presence of which would be sufficient
for the realization of the actual motion provided that the mechanical
system were completely free.

By the application of Gauss’ principle it is proved that the work T
along an analogous cycle constructed for the actual motion is an extremum

fT.
o8 T
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Thus, this theorem is equivalent to Gauss' principle. By means of
Carnot’s principle in thermodynamics this theorem permits us to widen the
nature of the usually-considered mechanical systems. This theorem is also
interesting as an immediate modification of an idea of Herman and Euler
and developed by Lagrange in his exposition of d’Alembert’s principle.

Paper [27 ] is immediately related to these investigations of Chetaev.
It is concerned with the motion of a mechanical system depending upon
certain forced variable parameters 0i. the variations of which are con-
nected with the coordinates Xis Y;is z; Of the system and are such that
they do not admit the hypothesis of very small or adiabatic variation.
The system is subjected to ideal constraints, restricting the possible
displacements 50, 8x,, 8y, 3z; by means of linear relations.

In the paper, a basic principle of dynamics for such systems is es-
tablished, the principle of d’Alembert and Lagrange is generalized, and
this principle is then modified. It turns out that the work A, calculated
along the elementary cycle consisting of the direct actual motion in the
field of acting constraints and forces and of the inverse motion in the
field of forces sufficient for the realization of the actual motion if
the mechanical system were completely free, is a minimum of A4 , where 4
is the work calculated along the elementary cycle in a conceivable motion
(in the sense of Gauss).

In the case where the actual displacements of a mechanical system are
among its possible displacements the theorem of vis viva is obtained.
This theorem leads to a series of important consequences, in particular,
those relating to the stability of the equilibrium position.

Chetaev’s paper "On certein constraints with friction® [67 ],
published in this issue, is of great interest.

Usually, considering systems with friction, the latter, by introduc-
tion of friction forces, are reduced to systems with smooth constraints.
Such systems are then investigated by the usual methods of mechanics.
Chetaev showed that, with sufficiently broad assumptions concerning the
friction forces, a general theory of material systems with constraints
of the friction type can be developed. Addition of friction forces to the
forces acting on the system is not required.

2. Equations of motion in terms of group variables. Geometrically, a
motion can be interpreted as a tranaformation of variables.

Transformations can be carried out in various ways. The set of trans-
formations representing the motion possesses particular properties which
8. Lie and F. Klein reduced to the concept of a transformation group.

The development of these representations of the motion lead to the
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establishment of the equations of mechanics in terms of a certain Lie
group of infinitesimal transformations. These equations were introduced
into mechanics in 1901 by H, Poincaré. Considering a mechanical system
with n degrees of freedom, restricted by smooth holonomic stationary
constraints and under the action of forces which admit a force function,
Poincaré introduces n operators of the transitive group and obtains the
differential equations of motion in terms of the new group variables.

In Papers [5,6 ], Chetaev considers the same problem as Poincaré, but
assumes that the constraints are nonstationary, and determines the posi-
tion of the system by means of the dependent coordinates Xys eceesr X
Then, infinitesimal operators of a certain intransitive group

9
6:1:1

r

of

re
XD =g G gt 48 B &m=§w% (=1, ..., n)

can be found by means of which the transformation

M mX () dt+ Xo(f) dt
1

carries the system from the given position into an infinitely near
position in the actual displacement while the transformation

n
Do X ()
1

does the same in a possible displacement.

Further, assuming that the operator Xo(f) commutes with all the Xi(f)
and making use of the Hamiltonian principle, the author obtains the equa-
tions of motion in the form of Poincaré:

d aT aT .
at oy =%°a:k5ﬁﬂ.+xi(T—U) (=1 ...m
8,

and also in a new canonical form

dy, oH dz; oH T
— = — — X, (H), — i i(H), = __
5= Qg — L) pe=Rx e + X w=g

H=Yym—T+U

where the Cgip are the structural constants of the group. These equations
are now called the Chetaev equations in terms of group variables.

Next, is proved the existence of a relative integral invariant of the
first order for the system of the equations of motion.

Further, Chetaev establishes a Jacobi-Hamilton type differential equa-
tion in partial derivatives
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XoW)+H[t,xy, ..oz, 5i(¥), ..., X, (V)]=0

which is satisfied by the function of action ¥(t, x,, ..., X, 8, eees
“r) and shows that if a complete integral of this equation is found, then
the solution of the dynamical problem is reduced to the equations

ov

Ea_i =b, y; = X; (V) {a;, b; = const)

Paper [ 6 ] ends with a proof of Poisson’s theorem which permits us to
construct a new integral of the equations of motion provided that two in-
tegrals of these equations are known,

In Paper [ 26 ], which was published considerably later, a further
treatment of this field of analytical dynamics is given. In particular,
obtaining for the action function the expression

Wo= Do, X, (V) + Do X0 V) = Ny,0,— D v,°0,°

where X‘° is the operator X‘ applied at the initial imstant ¢, Chetaev
proves the existence of the linear form

Q= Zy‘m‘

which determines a relative integral invariant of the first order, and
the quadratic invariant form

Q= D) [by, 0,1 — D) Caps¥s [0a®p]

To new problems of analytical dynamics belpngs the important problem
concerning the construction of a group of possible and actual displace-
ments, when the constraints are given by a differential form.

In this same paper [ 26 ] Chetaev introduces the concept of cyclic dis-
placements. The author calls a displacement xa cyclic 1if

X, (L)y=0, (X, Xy)=0 (a=s+141, ...n k=1,...,n)

holds, where (X;, Xb) is & Poisson bracket and L = T+ U is the Lagrangian
function in terms of the group variables. Under these conditions r — s
integrals of the Poincaré-Chetaev equations

oL

5§;==B¢
can easily be found. For the remaining noncyclic displacements the equa-
tions reduce to the form

d (OR R
@ (aT,) = ) ujpa gy T 2 Canaby + X; (B)
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where
oL
R(t, 3 TR z,.. Nis + oo nsv Bl+l' Y} B]‘)=L—Z|‘a_-—.nana

If, in addition, °a'y = 0, then these equations are the equations of
motion of a certain hoiononic system, the role of the Lagrangian function
being played by the Routh function R.

At the end of Paper [ 26 ] Chetaev makes two important observations
about the solution of equations of motion in terms of group variables:
first, when the grour is intransitive, and, second, about the possibility
of solving equations of the type of Hamilton-Jacobi in terms of more
general functions than the function of action.

This paper [26 ] of Chetaev determined in many ways the direction of
subsequent investigations into the dynamics of mechanical systems in
terms of group variables.

In Paper [50 ] an example is given of the application of the above-
mentioned equations to the problem of motion of a similarly changed body.
A concrete group of Lie is constructed for such a body, and for the first
time the equations of motion are obtained analytically.

In this paper Chetaev acknowledged his debt to his former teacher, the
Kazan' geometrician and mechanician, D.N. Zeiliger.

3. Stable trajectories in dynamics. In Paper [ 12 ] Chetaev, apparently
tfor the first time, briefly pointed out the essential importance of
theoretically stable motions and their relation to the actual motions in
mechanics.

Let 9)r ceor Gy and p,, ..., P, be. respectively, the generalized co-
ordinates and their conjugate momenta of a holonomic system subject to
stationary constraints and forces admitting a force function ”o(ql' cves

9,)-
The coefficients gij in the quadratic form of the kinetic energy
1
T= 7 2 8i;PiP;
will depend only on the coordinates.
The complete integral of the Hamilton-Jacobi equation has the form

—ht+Vo(qu ..o Gpo G1e oy @)

The energy constant h depends on non-additive constants Qye veey @, and

the general solution of the mechanical problem is given by the well-known
formulas
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o v, v,

= — 1 -
By 9a;  ga;’ Py aq;

(i=1,...,n) (3.1)

where the ﬁi are new constants of integration.

If the Hamilton function H(q;, .... ¢,. P}, ..., p,) has the meaning
of the total energy 7 - U,, then the Hamilton canonical differential
equations of motion

d

4, _ oH dps ___OH 3.2

dt ~ ap, dt dq,

have the variational equations of Poincaré in the form
d§; o*H 9H
t —Eap-aq 26‘
»H mH .3
Zaqiaq Zaq 0p Ki ((=1...n)

Pixing the constants a;, ..., @, B;. ..., B,, any motion can be
assumed for the unperturbed motion. The problem of stability of this
motion then can be formulated with respect to the coordinates ¢,, ..., gq,
under the condition that the constants Qs soer @, do not undergo vari-
ations. By virtue of this condition it then follows,from (3.1) that, to
within small quantities of the second order,

v,

= Z} oy 5

This permits us to write the first group of Equations (3.3) by taking
into account the relation

1
H= qz—zgi,-mpi—- U,
in the form
_ av
- 2 g, 2 oo (g” aqo) (3.4

is

Noticing further that by virtue of the structure of Equations (3.2)
the stability of the considered motion in the first approximation is
possible only for the zero values of the Liapunov characteristic numbers
of the solutions of these equations, Chetaev concludes that a necessary
condition for the stability is

x{expSLdt}:O (L x;?’%‘[gii %%]) (3.5)

where y is the characteristic number of the function in parantheses. The
system is assumed to be regular (2) *"as is natural to assume if we are
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dealing with Nature..." [121].

The set of unperturbed motions with fixed constanis a4, ..., a.,
Chetaev calls a packet. Purther, pointing out the difficulties of judging
the stability by the first approximation in problems of mechanics, he in-
troduces potential perturbation forces and states the requirements for
stability as follows:

*In Nature it is natural to assume that the perturbation forces admit
a force function W depending on the variables g;. The perturbation forces
tend to increase the value of the function W; their influence on the
packet at an arbitrary point ¢, of the phase space is proportional to
the density of the trajectories at this point

ar= gy

*From this it follows that the perturbing forces disturb that packet
relatively less, for which

&W $* dv — maximum {3.6)

where dr denotes a volume element of the phase space. This means that
considering the set of all motions, the perturbing forces assign absolute
stability to that packet which satisfies the condition (3.6). The trajec-
tories of this packet will be called permissible orbits. To make com-
parisons posgsible assume for the measurement of the density the natural
assumption

Sq;q;*ah:i

*In order to determine the differential equation of the variational
problem (3.6), consider that motion of the material system which would
have taken place under the same initial data but, in addition, under the
action of the perturbation forces. Here the energy integral always exists

T=W+Us+h

*This allows us to write the integral (3.6) in a different form
S (T — Uy — k) §g*dr

where in T, instead of the variables p;, the derivatives ao/aqi must be
subsgtituted, corresponding to the unperturbed motion. If the expression
of the density function

q) = AeiV

is taken into account, then we can conclude that

. ay ay* 3494
24 = Dty g, ~ 287,
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*Consequently, the integral (3.6) can be written as follows:

- A A o
— 5[~ Dl S+ DG fe 2 Wt By os
q; 9,
*From here, after obvious transformations, we obtain the following
relation

Sw[m+zwo+h)¢— ] é= 0

for the determination of the differential equation of the variational
problem (3.6). Whence the basic equation for the permissible orbits is

Ay +2(Ue+ By~ By 3.7

*If A A= 0, then our basic equation (3.7) assumes the form of the
differential equation on which Schrodinger in his *Abhandlungen zur
Wellenmechanik* has based his wave mechanics.®

Remarking casually that the regularity of the solution of Equation
(3.7) leads to the eigenvalues of the constants By cee0 @, (l.e. also
of h), and consequently, to a discrete disposition of stable trajectories,
Chetaev concludes this paper [12 ] in the following way:

*We think about a material system moving under the action of certain
forces in a weak field of perturbations, This latter destroys any motion,
provided only that it is not stable and permissible. In this way stable
and permissible motions are preserved. But it can never be assumed that
in Nature the motion takes place along a stable trajectory. There always
exist small deviations due to which the actual motions of a material
system take place in a sufficiently small domain enveloping a stable
trajectory

1G1<e

*Adjacent trajectories, differing as little as desired from a stable
trajectory, must ‘oscillate’ around the latter (x' = 0)*; this phenomenon
gives us an idea of a *‘wave'".

Passing to Paper [ 19 ] by Chetaev "On stable trajectories of dynamics®,
let us quote in full, first of all, that part at the beginning of the
paper which is basic to the author's conclusions connected with his
principal approach to the problems of the stability of motion:

*How are the laws of nature found?

* Here K, denotes the characteristic number of the solution of system

(3.4).
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*"To explain any mechanical phenomenon of Nature we first make definite
hypotheses about the essential moving forces. This permits us to write
down certain differential equations of motion in terms of the variables
x, of the material system under consideration. In the case, where the
solutions of these differential equations give for the functions studied
ék values which are near the experimental data (to within the limits of
the errors of the experiment), the hypothesis is assumed as a law of
Nature, at least until experiments reveal new facts which contradict it.
When such facts are discovered, new hypotheses are made without any re-
striction by the customary fundamental concepts which hold at that time.
This is only done provided that in the framework of the latter it is im-
possible to obtain good agreement with the experiment.

*¥hen can the deviations of the theory from the experiment be in-
significant?

*Every time that we make an attempt to explain these or any other
phenomena of nature, we must not forget that in reaslity no phenomena
present themselves in a pure form. No matter how precisely the forces
acting on the system are determined, there will always exist weak per-
turbations which have not been taken into account, These latter, no
matter how small they may be, influence the motion of the material system
and give to the functions, the values of which are determined experiment-
ally, not the theoretical values ¢ﬁ but certain other values Fj.

*Assume that for the perturbation forces of a certsin type and for
small perturbations of the initial data, not exceeding numerically a
certain small quantity ¢, the inequality

AF—0r <L

holds for all t exceeding the initial instant ty. Purther assume that for
an arbitrary number L there always exists a small number ¢ different

from zero. Then the unperturbed (theoretical) motiom of the mechanical
system subject to the given perturbation forces is said to be stable with
respect to the functions ¢% and unstable in the opposite case.

*In reality, according to this definition of stable and unstable
motions, the general character will be preserved, at least with respect
to the functions ¢%' only by those theoretically unperturbed motions
which are stable with respect to ¢b’ The last circumstance does not mean
that all motions, determined by the accepted laws, will turn out to be
stable for any small perturbation forces and for arbitrarily small per-~
turbations of the initial data. It means that these laws, due to the
basic requirement of small deviations from the experimental data, cannot
rely on anything other than the motions which are stable in one or the
other measure with respect to the observable functions ¢h'
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*This proposition, which is a simple consequence of the definition of
stable unperturbed motions and of the requirement of small deviations
between theory and experiment, and which refers more to the structure of
our scientific knowledge, we shall call the postulate of stability and
will accept it without reservation. It will not matter whether later on
this postulate is confirmed or refuted; for the present it is interesting
to see that consequences can be deduced from it,"

Purther, repeating the statement of the problem of stability of a
mechanical system, which was mentioned in the review of Paper [ 12 ], and
writing out the same equations including the system (8.4), Chetaev gives
a rigorous proof to the effect that in the case of stability in the first
approximation of the unperturbed motions under consideration, the Poin-
caré variational equations have only zero characteristic numbers. The
proof makes use of the invariant of equations (3.3) given by Poincaré

N Emy — 16"

where £, cooy &0 My cee p and €17, ol £° 0,7 oo, g, are two
arbitrary solutions of these equations, as well as of the basic lemmas
of Liapunov (2) on characteristic numbers.

The assumption that the system (3.4) is regular leads to the condition
(3.5). In addition, assume that this system satisfies the requirements
of reducibility and that the corresponding linear transformation

== 5
i

posgesses the determinant which is constant and different from zero.
Then, due to the invariance of the characteristic numbers of the solu-
tions of the system (3.4) under such a transformstion and the well-known
theorem of Ostrogradskii-Liouville, we shall obtain from (3.5) the
necessary condition of stability in the form

R K. Vo) _
S ACH el @8

This condition expresses the fact that the sum of the characteristic
numbers of the system (3.4) is equal to zero.

In the actual motion, let the material system be under the action of
forces with the force function "o' theoretically taken into account
above, and subject to unknown perturbation forces which, however, are
assumed to be potential forces admitting a force function W. The actual
field of forces is then determined by the function Ub + N

If the statement of the problem of stability for the actual unper-
turbed motions, under the perturbations of the initial data only, is



Analytical dynamics 251

preserved in the same form as above in the theoretical field of force
with the force function Uh, then the necessary requirement for the
stability in the first approximation, as, for example, in the form (3.8),
will not be effective in the general case, since the functionm V¥, playing
in the actual motion the role of Vb. is not known (as also is W). How-
ever, conditions of stability can be found which do not depend explicit-
ly on the unknown function of the perturbation forces N, but will contain
only the constant of integration h which has the independent physical
meaning of the total energy.

Let us begin from the requirement of stability in the form (3.8),
assuming that the conditions for its existence (reducibility and so on)
are satisfied for the actual motions.

Introduce instead of ¥V a new function
$= AkV

where k is a constant, A a real function to be determined and i = ' ~1.
After simple calculations, using equations of the type (3.1) and the
energy integral for the actual motions, the condition (3.8) assumes the

form
¥ 20, (B9g) a1 Doy (B3 ) —

j
2 10y 104
zgﬁb_q_(_._i_A b;;)+2k2(Uo+W+h)=0 (3.9)

This equation will not contain F if 4 is determined by the equation
1 2ki
e

which after its separation into real and imaginary parts decomposes into
two equations

1 :3 ( 94 A
NI B P S 210
2WA Ly, Jaqj) =% ag; Py (3.10)

Equalities (3.10) determine the structure of the perturbation forces
for which one of the stability conditions does not depend on these
forces explicitly, but depends only by means of the energy constant h.
If conditions (3.10) are satisfied, condition (3.9) assumes the form

a (, 3 2 -
%]a-q- (g,, 55) + 2R (U, 4+ ) =0 (3.41)
Single-valued and continuous solutions of Equations (3.11) for the

function iy are admissible only for the eigenvalues of h., Consequently,
also, the stability of the actual motions will take place only for these
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values of the emergy constant A. For the function U° of the theoretical
forces these values of h can be determined in principle from Equations
(3.11). Let us quote in full this important part of the paper [18]:

*Because of this kind of effectiveness the method of solving our
problem changes sharply to the opposite. Let us imagine our previous
material system and assume that it is subject to perturbation forces
with the force function W, determined by formulas (3.10). Knowing in
advance the force function of the essential or theoretical forces Uo. vae
can find the eigenvalues of the constant h in the differential equation
(3.11). Let ¢ be a certain eigenfunction of this equation corresponding
to the constant h. If now, in Equation (3.11), the function y is replacdd
by a new function S, determined by the formulsa

then, separating the real and imaginary parts, this formsula, in accord-
ance with the assumption about the structure of the perturbation forces,
decomposes into two equations. The first one

1 as as

28§ a—a—=Ue+W+h
shows that S will be a particular solution of the Hamilton-Jacobi equa-
tion corresponding to the actual motions of the considered material

system. The second, existing if this particular solution S appears in
the complete Jacobi integral V for the actual motion,

2 (g _6:5) —0
r 9g, \ °1i g,
shows that the necessary condition of stability X « s = 0 18 always
satisfied.

*If the actual motions are not additionally constrained, themn the
possibility of obtaining stable motions outside of the solutions just
found is not excluded. It is easy to observe that all stable actual
motions which are not obtained by this method will have one general proe
perty, namely, for them the necessary condition of stability 3 K, = 0 is
not equivalent to condition (3.8).

*"If, however, under these circumstances the actual motions are such
that the variational equations (3.4) are reducible by means of a sub-
stitution with a constant determinaat, then according to the previous
analysis the possibly stable motions of such a system will be contained
in the set of the obtained solutions, Of course, the latter may contain
spurious or superfluous solutions which can be discarded if one considexs
the whole set of necessary conditioms for the stability in the first
approximation, and does not restrict himself by the single condition
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Sk _=0."

In Paper [19 ] is given the simplest example of a free material
particle moving in the field of potential forces with the function UO'
The conditions (3.10) for the structure of the perturbation forces assume
the form

1 a4
‘V=2———k’mAAA, Z-a—qj-pj=0

and the condition (3.11) the form
DAY+ 2k m (U +h)$ =0 (3.12)

i.e. it coincides with the well-known Schrodinger equation of quantum
mechanics. The latter, in the given case, represents the relation, re-
stricting the choice of the constants in the complete Jacobi integral.

In the case of more complicated necessary conditions of stability
K.= 0 (and not only X x. = 0) and preserving the reducibility of Equa-
tion (3.4), the problem of selecting stable actual motions reduces anew
to theorems on the existence of regular solutions ¢n(") of certain
systems of differential equations in partial deriva%lves having, however,
in this case, a considerably more complicated form. In the general case,
when to the characteristic roots i, of the reduced system of different-
ial equations obtained from system (3.4), there correspond arbitrary
elementary divisors, the form of these equations is

ag;tn ;" gy 2 [ oV
+ 3 » + (sr) _@ . — Asr) __ g, (5, r—1)
at 2 aq{ gik aqk 2 q"l aqj gﬂ\ aqk l"'sq);, q’J
(r=1,..,n:5s8=1,...,k j=1,..., n) (3.13)

where k is the number of groups of solutions, n, the number of solutions
in a group, corresponding to the root y‘(n1 + g+ oo 40y = n),

¢.(") = 0, and ¥ is the function contained in the complete Hamilton-
Jacobi integral and satisfying the equation

Ny WV oW+ W+

The function N presupposes a certain structural definiteness.

In the case of simple elementary divisors Equations (3.13) simplify
considerably.

The paper concludes with an example and a discussion of the types of
the solutions of equations of the form (3.11) for the motion of free
particles.

Paper [20 ] "Stability and the classical laws", published by Chetaev
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in 1936, is also similar in aim to the paper "On stable trajectories of
dynamics*. By means of concrete laws of physics Chetaev illustrates the
validity of the stability postulate, i.e. the necessity of recognizing
the stability of one or the other trpe (in the sense of selecting func-
tions which take part in experimental measurements, and the form of the
perturbation forces) by virtue of the requirement of small deviations of
the theory from the experiment.

1. Congider the equilibrium of an isotropic continuous medium, assum-
ing that the inner forces, developed as a result of its deformation, are
congservative, and that that part of them which cannot be taken into
account (perturbation forces) is not of lower order than two with respect
to the small deformations. Of what kind must these inner forces be if
one starts with the postulate of stability?

By virtue of Lagrange’s theorem on the stability of the equilibrium
and its converse by Liapunov and Chetaev [23 ], there is at every point
of the medium s force function of the form

U=—k3(xn*+ad+2) + W (3.14)

where %), %9, %3 &re the deviations of this point from the equilibrium
position, and W is a function which with respect to these deviations is
of the order greater than two.

Thus, the force of elasticity will be defined in accordance with
Hooke’s Law which has a good experimental foundation.

*It is interesting to note that Hooke's Law does not possess dynamical
stability for arbitrarily small perturbation forces (the order of small-
ness being larger than one). Therefore, from the point of view of the
stablility postulate, it becomes clear why serious objections have been
raised to Hooke’s Law on the grounds of its insufficiency in certain
dynamical problems” [20].

2. The behavior of the entropy S of a set of bodies, changing in a
certain physical and chemical process according to the second law of
thermodynamics, is characterized by its nondecrease. If So is its
maximum, then

&

where V= 8§ — S° plays in this law the role of the Liapunov function in
his basic theorem on the stability of motion, although here it is im-
possible to give for the process a clear mechanical analogy.

3. Consider the last problem, which refers to the law of gravitation
of Newton and is connected, due to its origin, with the laws of Kepler,
which in turn are based on the astronomical observations of Tycho de
Brahe.
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Prom the point of view of the Chetaev principle ell three laws of
Kepler must contain directly such elements of the planetary motion which
by necessity are stable in the theoretical law of gravitation of Newton.

Let us quote in full the concluding words, referring to this idea.

"Let us verify! The elements of the first law of Kepler (plane and
the law of areas) are obviously stable not only in the law of Newton but
also for arbitrary central forces. In the problem of two bodies, if the
particle under consideration describes, according to the Newtonian law,
an elliptic trajectory, the motion will be stable with respect to the
quantity

——Pr
F—T+ecoso

where p and ¢ denote, respectively, the parameter and the eccentricity
of the ellipse, described by the particle in the unperturbed motion.
Here r and ¢ are the radius vector of the particle in the perturbed
motion and the angle between this radius vector and its smallest value
in the unperburbed motion. This proposition of Liapunov ("General
problem®, p. 13) shows that in the smecond law Kepler also used stable
elements. The fact that in the third law Kepler talks about stable ele-
ments was established by Laplace, Lagrange and Poisson in the well-known
theorem on the stability of the major semi-axes of elliptic orbits®.

4. The opticale-mechanicel analogy. A large and very important part of
Chetaev’s work is connected with the investigation of the general proper~
ties of the perturbed motions of mechanical systems in the neighborhood
of a stable unperturbed motion.

Paper [ 34 ] occupies an important place in this field: it deals with
the properties of the perturbed motions described by the variational
equations (3.3).

Here, a fundamental theorem is established to the effect that in the
case of a stable unperturbed motion the variational equations (3.3) not
only have all their characteristic numbers equal to zero but are also re-
ducible in the sense of Liapunov (2) and possess a definite quadratic
integral.

These results permitted Chetaev to pave the way for the development
of the optical-mechanical analogy which he completed in his papers [55,
59, 61, 65 1.

The importance of the optical-mechanical analogy in the development
of classical mechanics is well-known. The analogy between the principles
of Fermat and Maupertuis, in particular the analogy between the wave
theory of light by Huygens and the motion of a conservative mechanical
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system, played an important role in analytical dynamics. According to
Chetaev *... the roots of the beautiful results obtained in analytical
dynamics after Lagrange are to be found in the analogy between mechanics
and optics. For contemporary problems this analogy does not, in my
opinion, play any lesser part".*

Chetaev has underlined that the analogy to the oscillatory process in
physics must be sought in the small perturbed motions about a stable
motion of a holonomic conservative dynamical system. Thus, in Paper [61],
it is said: “Hamilton discovered the analogy between the wave optics of
Huygens and the motion of a mechanical system, restricted by holonomic
constraints and subject to the action of forces, admitting a force func-
tion. This important discovery determined for a century the progress of
analytical dynamics".

These remarks illuminate Chetaev's interests and the general trend of
his investigations along the lines of the optical-mechanical analogy.
Let us examine briefly the paper *On the continuation of the optical-
mechanical analogy" [61].

Let us return to Equation (3.8)
] o
— Py gp— =0
Zaqi (g,, aqi)

This equation is of the elliptic type since the g;; are the coeffi-
cients of a positive quadratic form which determines the vis viva T.

By virtue of the Hamilton-Jacobi equation the function V satisfies
the equation

Zg..?_g_?.‘i=z(u+h) (4.1)

Consider now the twice differentiable function
O (—ht-+V)

Under the assumption that the above introduced necessary conditions
of stability are satisfied, the function ® will satisfy the equation

2U + WD N1 0 2D
MR G =Yg, (%5, o

* This quotation is taken from N.G. Chetaev’s peper "Dialectical
principle and exact natural science" published in 1930 in the Vestnik
Kazanskogo Fiziko-matem. Student. krushka (1ithographed).
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*This wave equation establishes the analogy between the mathematical
theory of light by Cauchy and the stable motions of holonomic conserv-
ative systems",

The optical-mechanical analogy is fully investigated by Chetaev in
the light of the theory of Lie groups. The basic idea is the coincidence
of the transformation group of one phenomenon (oscillatory process of
the propagation of light) with the transformation group of the other
(perturbed motions near a stable motion of a mechanical system).

B. Theory of Stability of Motion

For convenience of exposition, Chetaev’s work on stability can be
subdivided into the following sections: the problem of existence of
stable equilibrium figures of rotating liquids; the general theorem on
instability and the converse of the theorem of Lagrange; investigation
of stability in the first approximation for a non-stationary motion;
elaboration of effective methods for the construction of the Liapunov
functions.

5. Stable equilibrium figures of rotating liquids. The works of Liapu-
nov on the equilibrium figures of a rotating liquid and their stability
contain a rigorous proof of the existence of new equilibrium figures uni-
formly rotating about a certain axis, the liquid being assumed to gravi-
tate according to the Newtonian law, and also the statement together with
a solution of the stability problem of these figures. Liapunov proved
the instability of pear-shaped figures. This refuted Darwin’s cosmogonical
hypothesis on the development of an estinguished star through pear-shaped
figures of equilibrium, After the works of Liapunov the problem of the
development of an ideal extinguished star remained open.

In Papers [3,4 ]. Chetaev set himself the task of investigating a con-
tinuous sequence of stable equilibrium figures of a homogeneous rotating
liquid mass, subject to the action of the Newtonian gravitation forces,
forces of radial compression toward the center of gravity with constant
velocity 5, and constant pressure on the surface. ’

First, he showed that the problem of finding the equilibrium figures
of such a rotating liquid mass reduces to the solution of the functional
equation

=’ o n?
/e S—A— 5 (2 4 y?) — 5 (#® 4 y* 4- 2%) = const =a (§,) (5.1)
T
where r is the volume of the liquid, S, the free surface, A the distance
between any two points (x, y, z) and (2", y", 2°) of the liquid, f the
constant of gravitation, w the angular velocity of rotation of the liquid
and p the density.
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Purther, Chetaev proved that the ellipsoids of revolution and the
three-axial ellipsoids satisfy Equation (5.1) under certain restrictioms.
Here, the axis of rotation must be shortest of the axes of the ellipsoid.

Applying the Gaussian principle of least constraint, Chetaev proved
that under the action of the forces of attraction and radial compression
the sngular velocity of rotation of the liquid mass in the actual change
of the equilibrium figure is forced to vary in the least way among all
conceivable motions. From this it unquestionably follows that in the
course of time the mass of the liquid changes its boundary figure of
equilibrium in such a way that of all the positions consistent with the
constraints the absolute value of the actual variation of the moment of
inertia of the liquid with respect to its axis of rotation is the least.

Consequently, the actual figure of equilibrium in the region of a
certain bifurcation point will be that for which the inertia moment of
the mass

{4 v

assumes a maximum.

In order to single out a stable sequence of equilibrium figures
Chetaev makes use of the Lagrange theorem on stability when a force
function exists and adapts the proof suitably for the case under con-
sideration,

Applying this theorem to the linear approximation, Chetaev establishes
the distribution of stability and imstability in the sequence of ellip-
soidal figures of equilibrium of a rotating homogensous liquid.

Further, stable figures are sought which are derivatives of stable
ellipsoids of revolution.

As was mentioned above in connection with the problem of the equi-
librium figures of a rotating liquid, at the beginning of the present
century serious differences of opinion arose between Liapunov, Poincaré
and Darwin as to the question of stability of the pear-shaped figures.
The dispute was solved in favor of Liapunov.

However, as Chetaev pointed out in Paper [9], Liapunov’s in-

genious method overlooks one delicate point still to be considered. As
is well-known, Liapunov proposed to comsider a certain linear sequence
of tigures (f), differing as little as desired from the critical ellip-
soid £, of Jacobi. Separate figures f of this sequence are completely
determined by the values of a certain parameter a, and those of thes for
which certain functions L(a) vanish turn out to be equilibriuam figures
being the derivatives of the ellipsoid !,. Since the various f-figures
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do not represent all geometrically possible figures which are near EO'
then the question whether all the equilibrium figures which are deri-
vatives of Eo are among the f-figures of Liapunov is of the highest im-
portance.

Paper [9 ] by Chetaev, which consists of five chapters is devoted to
the solution of this difficult problem.

In the first chapter are derived the basic nonlinear integral equa-
tions for a variable which determines a figure of equilibrium which is
near to the ellipsoid and has the same angular velocity of rotation as
the ellipsoid. Chetaev uses here some results of Liapunov, but obtains
the basic equation in a form which is slightly different from that of
Liapunov and much simpler.

The second chapter is devoted to the investigation of the problem of
the distribution of the critical equilibrium figures in the sequence of
the Jacobi ellipsoids.

In the third chapter, the author proves that not every figure of
equilibrium, being a derivative of the ellipsoidal figures, is among the
f-tigures of Liapunov. Because of the difficulties in applying the
general method for the investigation of the ramification of the solutions
of nonlinear integral equations to the problem on the spreading of the
equilibrium figures which are the derivatives of the ellipsoids, the
author proposed a generalization of the Liapunov method, by means of
which he then proved the above-mentioned assertion.

In connection with this there arose the problem of the determination
of the sequence of stable equilibrium figures. Chetaev is concerned with
this problem in the fourth chapter of his memoir, Pirst, he outlines
Liapunov’s theorem on the stability of the equilibriue figures, accord-
ing to which, if for a certain form C of the liquid the fumction

1

ol = FSS d";h' — ot {2 + )i 5.2)

assumes a maximum for the given value L of the moment of momentum, then
this figure C is stable.

For the case L £ 0 Liapunov showed that it makes no semse to speak
about the absolute maximum of the function II, if the liquid mass is
subject to no additional restrictions. Chetaev introduces such an addi-
tional condition and proves that, if there exists a lower bound, which
is not infinitely small, for the masses of the separate bodies into
which a certain homogeneous mass of an incompressible liquid can be de-
composed under the influence of the Newtonian forces of attraction and
the centrifugal forces, then for this mass there exists at least one
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body for which Il assumes its largest value, and, consequently, at least
one stable equilibrium figure.

The fifth chapter is devoted to the consideration of stability of the
equilibrium figures derived from ellipsoids. Chetaev proves here two im-
portant general theorems on the number of real branches of the equilibrium
curve of & mechanical system, passing through a bifurcation point, and
on the change of stability. Particular cases of these theorems were
noticed in 1885 by Poincar$.

In order to clarify the problem of the distribution of the stable
branches of the equilibrium figures near a critical ellipsoid, the author
applies these theorems and proves the existence of a stable sequence of
equilibrium figures, being the derivative of the critical MacLaurin
ellipsoid and expanding in the direction of large values for the angular
velocity of rotation. The chapter comcludes with a statement of the
principal problem of stability of the Jacobl ellipsoids in the sense of
Liapunov.

6. General theorem on instebility and the converse of Lagrange’s
theoren. The other problem which attracted the attention of Chetaev at
the beginning of his sclentific activity was the celebrated problem of
the converse of the Lagrange theorem on the stability of the equilibrium
when the force function has a maximum [ 11,16,17,23,48 ].

As is well-known, this theorem is as follows [37 ]: *If at the equi-
librium position the force function has an isolated maximum, then such
an equilibrium position is stable". By the converse of the Lagrange
theorem is understood the affirmative answer to the following question:
Will the equilibrium position be unstable if the force function is not
a maximum at this position?

In such a formulation the problea turns out to be very difficult, and
before Chetaev’s investigations it was solved only in special simple
cases. In particular, Liapunov first investigated (2, § 25) the case
where the expansion of the force function U in the neighborhood of the
equilibrium position g, = O bas the form U= U, + U, , + ... (U, being
a form of degree a > 2) and the sign of the force function U for a= 2
is determined by the terms of the second order.

Liapunov also showed by his direct method (2, § 16, Example 2) that
in each case where at the equilibrium position the force function assumes
a minimum and this can be determined from the consideration of the
totality of terms of the lowest order in the expanaion of the increment
of this function in terms of the powers of the increments of the co-
ordinates, instability of the equilibrium takes place. This problem was
also investigated by other authors (Radamard, Painlevé).
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In order to solve the problem of the converse of the Lagrange theorems,
Chetaev first had to develop the direct method of Liapunov. He gave a
general theorem of instability based on the ideas of the method of
Liapunov functions. This theorem turned out to be very useful for the
solution of the concrete mechanical problem described. However, the im-
portance of the general theorem on instability as given by Chetaev turn-
ed out to be considerably wider. This theorem can be considered as the
most general and universal criterion of instability.

The original formulation of the theorem [ 11 ] was given in 1930. A
more general formulation and a modification of the theorem were given in
Paper [ 16 1. An expanded proof for the general criteria of instability
is given in Paper [23 ].

The theorem on instability is as follows [ 16,17 ]:

If the differential equations of perturbed motion are such that (i)
for a certain function V, which admits an infinitely small upper bound,
there exists a region in which V¥’-> 0, (i1) 1f in this region (VV'.-> 0)
for certain values of the quantities %, numerically small as desired,
it 1s possible to single out a region into which a certain function
¥ > 0 which vanishes on the boundary, i.e. ¥ = 0, assumes for its total
derivative with respect to the time ¥’- values which are all of the same
sign, then the unperturbed motion is unstable.

If the region VV'-> 0 considered in the theorem is bounded by the sur-
face V= 0 and besides ¥’-> 0 holds, then the function ¥ can be taken
for F.

As the function ¥ also ¥’. can be taken. Then we obtain the original
formulation of the theorem on instability as given in the Paper [11 ].

These interesting criteria of instability gave rise to a certain
amount of debate, At first, it was thought, incorrectly, that the
theorem did not hold in the large. It should be pointed out that the
original formulations were given by Chetaev in the shortest possible
form and were designed for the investigation of those cases of the equa-
tions of perturbed motion for which misunderstandings in the interpreta-
tion of such concepts as the regions ¥v'.> 0, ¥> 0, W> 0 and s0 on
were almost excluded.

Later, in his book [37 ] and in Paper [48 ], Chetaev explained how, in
the general case, the terms used in the formulation of his criterion
should be understood.

In particular, in Paper [48 ], he pointed out that the regions V> O,
¥’-> 0 and so on in the neighborhood of the point x, = 0 should be con-
sidered on the closed time interval [¢t), «].
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The formulation of Chetaev’s instability theorem which has been most
widely adopted is that given in the book [37,48 ]. If one does not in-
troduce conditions for the existence of the region ¥’-> 0 on the closed
interval [to, w ], it can be formulated in the following way [ 37,48 1:

The function '(‘1' ceer X t) will be called positive-definite in
the region ¥ > 0 if it can vanish in this region only on the boundary
V=0, and if for an arbitrary positive number ¢, no matter how small,
there exists such a positive number ! £ 0 that for all %, satisfying the
condition V5 ¢ and all ¢ > t, the inequality W > 1 holds.

Theorem. If the differential equations of the perturbed motion are
such that a function V can be found, bounded in the region V> 0 and
existing for all t > ty, and for arbitrarily small absolute values of the
variables %, whose derivative V’, by virtue of these equations, is
positive-definite in the region V > 0, then the unperturbed motion is un-
stable.

The converse of this theorem has been proved and, thus, its uni-
versality established.

In Paper [ 11 ] Chetaev proposed a solution for the converse of the
Lagrange theorem using the Kronecker characteristics. The complexity of
this solution induced him to look for a more elementary solution. The
results obtained by Chetaev in Paper [17 ] can be reduced to the follow-
ing:

Let the system be described by differential equations in the Lagrange
form

d [ OF /) dx
fhal —_ =0, 8’ =1,..,k
dt ( ) oz, dt s (=1 )

where k
’ 1 ’ ’ —
F=.§.2(zi)2+_2_2 vz + U, v =V

f==1 i

U, v;; are holomorphic functions of L vanishing at the equilibrium
position x, = 0, and the expansion of U begins with terms of the order
not lower than two. If the force function U is a form U. and can asgume
positive values, then the equilibrium is unstable.

The proof is based on the investigation of the behavior of the func-
tion

k 4
=11 oF H=F—2U
V = -2—H p) [+ 3 (211‘ az{ ’

in a neighborhood of the point £, = 0. Under the conditions of the



Theory of stability of motion 263

theorem this function satisfies the conditions of the instability theorem.
If the force function U = U; + ... has a minimum and this can be deter-

mined by the lowest order terms, then the equilibrium z = 0 is unstable.

In Paper [ 23 ] Chetaev gave a new proof for the converse of the Lag-
range theorem in the general case when the force function U is analytic
and does not possess a maximum at the isolated equilibrium position. An
elementary proof was given in this paper only for the case where the
function U is a homogeneous function of degree = or U = U. + U+ ..
and the positive sign of the functions U = U; + 0;4_1 + ... and nU. +
(a+ DU, ; + ... is determined by the terms of the lowest order U,
without any necessity to consider terms of higher orders. It should be

noted that the first of the cases considered appears now in text books.

Elementary proofs (in the sense of Chetaev’'s definition) for other
more complicated and subtle cases of the converse of the Lagrange theorem
were given in Paper [48 ],

Here, the following particular cases are considered:

(a) The function U= U + U, 1+ oo + Up 1 + Up+ Uy + ..o,

where the forms U.. cens Uh- | are constantly negative, the forms "h+ 1

Upy2+ ... are constantly positive while the form U, is of variable sign.
For sufficiently small numerical values of the 9, the function U; +

U-+-1 +oeee + Uy + U, can be made positive. In this case the instabil-
ity of the point 5, = 0 is proved by means of the function

V=—HZp,q, (6.1)
which satisfies the conditions of Chetaev’s instability theorem.
(b) The equilibrium position ¢, = 0 is unstable if
U=—abg’+ (@ +b) g —q* (¢>a>0)
The problem is solved by means of the consideration of the function

V=-—H(qnpx+%ma+ 43P8+"'+9kpk)

(c) The equilibrium position g, = 0 is unstable if

U=—abg*+ @+ b) 1922 —g* (b>a>0)
The problem is solved by means of the function (6.1).
(d) The following conditions are satisfied:

(1) for arbitrarily small numerical values of the 9, such that ql2 +
eee + qnz < ! there exists a certain region C in which U > 0;
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(1i) there exist certain functions f'(ql, «e<s» q,), which together
with their first partial derivatives are continuous in C which vanish for
the zero values of the arguments and which are such that all the princip-
al diagonal minors of the functional determinant
.'?é+af'

(s,r=1,---,n)
dg,  9q,

are bounded from below by positive numbers of the region C, and the func-
tion
au
25;;’3

is positive-definite in the region C. In such a case the equilibrium
position 9, = 0 is unstable. The problem is solved by means of consider-
ation of function (6.1).

7. Investigation of stability in the first approximation for a non-
stationary motion. A large part of Chetaev’s works is devoted to invest-
igations in this field [30,35,37,43,58,63 ]. These works contain, in
particular, important estimates for the solutions of the system of linear
approximation which have found an extensive practical application,

Among the papers of this section Papers [ 30,63 ] should be singled out,
in which the theorems of stability and instability are proved in the
first approximation for nonstationary systems. As is well-known, Liapunov
established the fundamental theorem of stability by the first approxima-
tion for regular systems (2, § 12,13),

In Paper {30 ] Chetaev proves analogous theorems of instability by
the first approximation. "If the system of differential equations in the
first approximation is regular and if only one among its characteristic
numbers is negative, then the unperturbed motion is unstable. If the
system in the first approximation is not regular, then, introducing ¢ =
Aj+ .o+ Au, where the A; are the characteristic numbers of the normal
system of its solutions, we have s + g = = 0 (u is the characteristic
nusber of the function 1/ A, o> 0). Purther, if only one of the charac-
teristic numbers Ai is negative and less than (-~ o), then the unperturb-
ed motion is unstable®.

The proofs of these theorems are based on the properties of the Liapu-
nov characteristic numbers.

Later, in Paper [ 63 1, Chetaev gave new proofs for his own and
Liapunov’s theorems on stability by the first approximation, using the
direct method of Liapunov.

In Paper [35 ] is proved a theorem which appears in many text-books on
the theory of stability, nawely, on the smallest characteristic number
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of a nonstationary system, the coefficients pi-(t) of the linear approxi-
mation of which approach certain limits €ij as t - + oo,

If, as t increases indefinitely, the coefficients pi-(t) tend to de-
finite limits Ciie then the lowest characteristic number of the system
coincides with tﬂe lowest characteristic number of the limit system.

As a consequence of the theorem the following criterion of stability
by the first approximation is obtained:

If the elements of the matrix |[c,.|| are such that the real parts of
the roots of the characteristic equation "‘ij - 8i-A||= 0 are negative,
then the unperturbed motion x, = 0 is asymptotically stable.

In the same paper & more general case of a system with variable co-
efficients is also considered, and a method for the construction of
Liapunov functions in the form of a quadratic form with variable coeffi-
cients is demonstrated.

This paper can be considered as a source of works on the estimation
of the velocity of damping of the transition process in terms of the
estimates of Liapunov’s quadratic functions ¥(t, %5, «sss x,). The cri-
terion given in Paper [35 ] consists of the following:

For t > ty let the equation
A (}‘) = " p‘r ——58'}\ “ =0

have roots A, ..., A, for which none of the expressions BA + ..+
'dkn vanishes for B+ ...+ om, =2, Then, by a well-known theorem of
Liapunov there exists a form V=3 “sr(‘)’c‘r' which satisfies the equa-
tion in the partial derivatives

n
Z g_:;’.(p‘lxl+...+pmz")=x1’+...+xn’

s=1 ¢

Assume that for all ¢ > ¢ the diagonal minors Dl' ceey Dn of the dis-
criminant D = ||da, /dt + S‘rou are not smaller than a certain positive
number. Then, according to the Sylvester criterion, the derivative dV/dt
by virtue of the initial system will be a positive-defimite function.
Here the boundedness of the derivatives da‘r/dt & assumed. On these
assumptions, if V is negative-definite, stability takes place. Moreover,
if V assumes an infinitely small upper bound, asymptotic stability takes
place. If, however, V admits an infinitely small upper bound and can
assume negative values, then instability takes place.

In Paper [43 ] the problem of stability of the solutions of a linear
nonstationary system of equations is also considered. The basis of the
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method, described in this paper for the construction of the Liapunov
function V(x, t), is the following concept: if we denote the initial
conditions by LY generating for t = ty the set of the linearly inde-
pendent solutions z,.(t)(t > t,), then the quadratic form V(xz, t), satis-
fying the conditions V[ x,,(0), t] = Xep0 TOF s =1, ..oy mi t> ¢y will
obviously satisfy the condition d¥/dt = 0. If this form turns out to be
positive-definite, then by virtue of the Liapunov theorem the solution
x, = 0 will be stable. In Paper [ 43 ] Chetaev justifies the possibility
of calculating the coefficients a,,.(t) of the form V(x, t) by the method
of successive approximations, gives the corresponding formulas and dis-
cusses the effectiveness of the proposed method of investigation.

8. Effective methods for the construction of the Liapunov functions.
In a series of papers on the application of the method of Liapunov func-
tions to the problems of stability Chetaev proved the effectiveness of
this method and also justified the possibility of estimating the pro-
perties of the transition process in the system. Here, Chetaev emphasized
the fact that for a correct selection of the parameters of the system
securing the optimal properties for this system, methods based on the
calculation of the integral estimates for the separate trajectories
corresponding to the chosen initial conditions, prove to be insufficient
and may even lead to considerable errors. Paper [47 ] aimed to show the
inconsistency of the integral estimates for the separate perturbed tra-
jectories for the complete characterization of the optimal properties of
linear systems, and to show how true estimates can be arrived at by
Liapunov method. The paper considered a linear asymptotically stable
system described by the equations

dx

_E_t_'f:asla:l+...+a.ﬂxn (8.’.)

On the basis of estimates for the largest and smallest values of the
Liapunov function V as a quadratic form and its total derivative dV¥/dt
by virtue of system (8.1), an estimate is made on the basis of the
sphere of radius one from the above, for the transition time of an arbi-
trary perturbed trajectory of system (8.1), beginning on a sphere of
given radius A > 0 and crossing into a previously determined a small
sphere, of radius ¢ > 0. Since these estimates are determined by the
eigenvalues of the matrices of the form V and its derivative d¥/dt, and
the relations between these eigenvalues are determined by the coefficients
a.. of system (8.1), then by the same token a certain guiding rule for
the selection of the parameters of system (8.1) is obtained, which
guarantee its greatest effectiveness.

It should be noticed that the significance of this paper falls out-
side the framework of the concrete problem considered in the given paper.
In fact, the general considerations on which the method of estimates is
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based are obviously applicable to more general cases, namely, when a
Liapunov function can be constructed and a connection can be effectively
observed between the estimates of the properties (positive-definiteness,
upper boundedness) of this function and its total derivative (estimation
of negative definiteness) and the parameters of the system under con-
sideration. In addition, there are some very fruitful observations on the
study of the properties of the system by the simultaneous study of the
changes in its properties and in the properties of the corresponding
Liapunov function as the parameters vary.

The method of estimating the properties of linear systems by means of
quadratic Liapunov functions has been widely adopted, and a series of in-
vestigations have resulted in useful and effective estimates for the
velocity of damping of the transition process in nonstationary linear and
nonlinear systems.

9. Nonlinear systems for which the problem of stability car be solved
correctly by sufficiently simple approximate methods are called ‘rough’
by Chetaev. A system of this kind is considered in the note [64 ], the
results of which are immediately related to Paper [35 ].

Let the system of differential equations have the form

dz,
ﬂ’-’("u""fn)“l'*" ot (Cgn + ) 7y (s=1,...,n) (9.1)

where the c  _ are constants, f¢r bounded real functions of x;, ..., x,,.¢
tor s, 24 Lo+ 5.2<4, 05 .

If the auxiliary system of equations

dz,

Tt =Cafrt .t T, (9.2)

satisfies the condition that the roots A, of the equation || ¢, ~ 8, Al[=0
are such that for arbitrary non-negative integers s, we have 'lhﬁ + .ae

+ 'nxn £ 0 when Bpt+ .o+ omp =2, then the virtue of the Liapunov theorem
the equation in partial derivatives

n

NV (eymrt et ) = — (@t 2 ) = U (2. . 7,) (9.3)
8

oz

8==]1

determines uniquely the quadratic form
1
V= T 2 a,.7,7,
& r

For numerically small ¢ > 0 and a small g > 0 the derivative dV/d¢e,
by virtue of Equation (9.1), will satisfy the condition
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av
——r —REr +2,0) = D h,2z,> 0 for z’+..+z,2> 0
8, r

Thus, the asymptotic stability or instability of the unperturbed
motion is determined by the constants Core The quantities A and ¢, for
which such a correspondence between the systems (9.1) and (9.2) exists,
are determined by the inequalities of Sylvester with respect to the form

Zhar 8 l‘

Chetaev points out the possibility of varying the estimates for the
numbers ¢ and 4 which can be changed on account of the variation of the
form U(x;, ..., x,) on the right-hand side of (9.3), and, by the same
token, of obtaining for the optimal selection of U the widest estimates.

In the second part of the paper, Chetaev gives concrete estimates for
the largest and smallest deviations of the perturbed variables. These
estimates have been widely used in practical calculations. In particular,
the estimate

k.3
)4 ...+ 22 () <e —x'l—‘ e (9.4)

is given for the square of the radius of the sphere, into which at the
instant ¢ the point in the perturbed motion x (t) will enter under the
initial condition x5% + ... + x0%=¢ for ¢ > ty = 0. This estimate
generalizes to the case of quasi-linear rough systems the estimate for
the velocity of damping of the transition process in linear systems ob-
tained earlier by Chetaev in Paper [ 47 ]. In the inequality (9.4) the
quantities Ky and X, denote the largest and the s-allest eigenvalues of
the quadratic form daterlinlng the function ¥, ¢’ is a sufficiently small
positive constant and A° is the largest root of the equation

n
1 ab Obg ) - (dV _1 )
lT B§1 (ECL.E zp + ‘az:—: )= }‘alr" =0 a7 '2 by, 2,

Here dV/dt denotes the derivative of the Liapunov function calculated
by virtue of system (8.1).

10. Concluding this survey of the investigations of Chetaev into
stability, it is necessary to emphasize the importance of his monograph
*Stability of motion* {37,521,

This small book contains an investigation into the stability of motion
of mechanical systems with a finite number of degrees of freedom. These
investigations, which were initiated by the classical works of Liapunov,
and continued by the scholars of our country, consist of the systematic
application of Liapunov’s second method. Chetaev achieved important
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results in this field.

In this monograph, Chetaev does not attempt a complete exposition of
all the achievements in the field, but confines himself to those invest-
igations which have the greatest value in application.

Without enlarging the book, Chetaev managed to include in the second
edition [ 52 ] new theoretical results as well as a series of new problems
illustrating the theoretical results.

Chetaev emphasizes the vital fact that in the definition of stability
Liapunov used the concept of number and not the concept of an infinitely
small quantity.

This fact permits the successful application of Liapunov’s methods to
the solution of applied problems on stability which arise with the devel-
opment of technology and physics.

The author draws attention to the method useful in practical applica-
tion, proposed by Liapunov in the proof of his theorem for finding the
dimensions of the region of the initial perturbations provided an arbi-
trary positive number & is given, which determines the region of the
phase space, inside which the trajectories of the perturbed motion of the
system must lie.

In this book a condition for asymptotic stability is proposed which
is somewhat more general than the condition corresponding to the Liapu-
nov theoren.

The influence of perturbation forces on the equilibrium is examined.
Theorems of Kelvin about the influence of dissipative and gyroscopic
forces on stability are strongly proved. The important concepts of secular
and temporal stability introduced by Kelvin are explained.

The established possibility of estimating the characteristic numbers
by means of averaging the coefficients has great significance for
practical calculations.

Chetaev attached great significance to the correct statement of the
problem of stability. As a model of the statement he considered the
formulation of the stability problem given by Liapunov. Also, Chetaev
always paid great attention to the selection of those variables with
respect to which the stability is to be investigated. Here it is neces-
sary to point out that ignorance of this fact sometimes leads to the con-
clusion that stability problems which can be covered by the concepts of
Liapunov’s stability theory are considered by some investigators as fall-
ing completely outside the framework of this theory. For example, the
majority of cases which are of interest in applications of the so-called
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orbital stability can be covered by Liapunov’s definition of stability
(a classical example is the motion of a particle in the field of central
Newtonian forces (2)) provided that the variables are properly selected.

C. Rorks on Qualitative Nethods in Analysis

One of Chetaev’s first works on the qualitative theory of differential
equations was his proof of the general criterion of stability of motion
in the sense of Poisson.

One criterion of stability in the sense of Poisson was indicated by
Poincaré., This criterion required the invariance of the volume of a
certain set ¥ in the motion along the trajectories of the system. In his
Papers [ 7,8 ], Chetaev frees himself from the requirement of the invari-
ance of the volume and proves criteria for periodic functions X; with
respect to time.

11. In Chetaev’s works analytical methods are developed for the in-
vestigation of the behavior of the qualitative picture of the trajec-
tories of dynamical systems and, in particular, methods which originate
in the problems of the change of this qualitative picture as the para-
meters of the system vary continuously.

Here must be mentioned problems on the theory of bifurcation of equi-
librium which are closely connected with the problems of stability and
instability of equilibrium. A series of papers connected with these
problems is devoted to the theory of the Kronecker characteristics [ 13,
15,18,22,24 1.

By the term "Kronecker characteristic" in Chetaev’s papers is under-
stood a numerical characteristic of a set of n+ 1 functions Fb(’l' ooy
E 759 PR Fn(‘l' cees X)) Let the functions F,, ..., Fn be single-valued,
bounded, continuous together with their first order partial derivatives
’}h = 8F-/axk. and not vanishing simultaneously at any point (z;, ...,x))
of the space. Any system of equations F‘ = 0 obtained from any n func-
tions F‘ of such a system has only a finite number of roots, which in

the space x;, ..., z, are represented by certain isolated simple points.

Then the Kronecker characteristic y(F,, F;, ..., F ) can be defined
by the equality

X (For... Fo)= Disign A, (#,<0) (1L.1)
Fy

where A, is the minor corresponding to the element Fj, in the first columm
of the determinant
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Fo Fo Fon
D Fy Fy Fin
F, Fm. Fon

and the summation on the right-hand side of the equality (11.1) is
carried out over the roots lying in the region Fk < 0 of the system of
equations F, = 0(s £ k).

In Paper [ 13 ] Chetaev gave a theorem justifying a method proposed by
him for the calculation of the characteristics by means of variation of
the functions.

This method consists of a continuous variation of the functions of
the given gystem F,, ..., Fn to & system of new functions for which the
characteristic can be more easily calculated, and in the counting of the
losses and gains of units of the characteristic in such a transformation.

Varying continuously the functions F,, ..., Fn, the characteristic
then, and only then, undergoes a change when all the functions vanish at
any one of the "transition points® C%,

Assume that we have a single parameter z5. In the space Xgs Xys eses

z, the system of equations Fb = 0, oo, Fh = 0 determines the transition
points £k,

If to the initial system of functions corresponds the value of the
parameter x, = a and to the final system xg = B. and if the parameter zg
varies monotonically, then the difference between the corresponding
characteristics is equal to the sum of the characters of the transition
points

Xa (For oo Fr) —xg(Fo, ... F) = 5(cF)
k

This formula permits us to determine the difference between the
characteristics of two arbitrary systems of functions. The proof, for
example, given by Chetaev of Poincaré’s theorem on the parity of charac-
teristics serves as an application of this theorem.

Paper [22 ] is a systematic survey of numerous modifications and
basic applications of this theory.

In the first chapter are given the definitions of the characteristics
and the general theorems of Kronecker. The contents of the second chapter
consist of Chetaev's theorems on the calculation of the characteristies
[13]. The third chapter is devoted to the sources of the characteristic
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theory, i.e. to the theorems on the separation of roots. In the fourth
chapter, the theory of characteristics is applied to problems connected
with Poincar8’s work "On curves, defined by differential equations®. In
the fifth and last chapter Chetaev is concerned with integral expressions
of the characteristics.

Chetaev indicated the application of the theory of characteristics to
the proofs of various theorems of mathematics (part of which are given
in the form of problems in each chapter). In this way can be proved, for
example, Gauss’ theorem on the number of complex roots of a polynomial,
Brouwer’s theorem on the fixed points of a continuous mapping of a
sphere, the algebraic theorems of Sturm and Hurwitz, and the topological
theorems of Euler, Poincaré, Hopf and others.

In Papers [15.18,24 ] the problem of how far the method of Kronecker's
characteristics permits us to extend the solution of the problems in the
theory of stability is investigated. In Paper [ 15 ] the equations of the
perturbed motion are considered

dz, ¥
._d-t_z s B T 1) (s=1,..., n) (11.2)

It is shown how the definition of stability according to Liapunov can
be expressed in terms of the theory of the Kronecker cahracteristics.

The unperturbed motion z, = 0 is stable in the sense of Liapunov if for
any number L > O there exists a number ¢ > 0 such that the characteristic
X of the system of functions

Fo(an.on ) =", 2—L, Fi(an.ow z)=z—z(t) |(i=1..., n)
i=1

where the xi(t) are the motions described by the system (11.2) satisfy
the equality ), = 1 for ¢ > t, provided that the perturbations zio for

t=t, satisfy the condition

n
Xl.(}_‘) zl—e, n—a’ ..., zn——x,:):l
=

In the opposite case the motion is unstable.

Making use of the formula in Paper [13 ] mentioned above, it is shown
how the variation of ), can be expressed in terms of the Kronecker
characteristic of a certain new system of functions and how the basic
theorems of the direct method of Liapunov can be proved by means of the
Kronecker characteristics. Thus, in the case of Liapunov’'s first theorem
of stability, the variation of the characteristic x, of the system of
functions
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Fol(2) =V (51:. . zn)—c. F (2} ==z, —x; (1) i=1,...,, n

(V is the Liapunov function) as t changes is given according to the above
formula by

Yo, — %y = 2 sing V" (11.3)
kK

where the summation is carried out over the points fk for which F. = 0
(j=0,1, ..., n), and ¢ varies from ty to the instant under consider-
ation. If{x,°} € [Fy < 01, then x, = 1 and because of V' < O we have
Xt = X¢ = 00 1l.e. ), = 1. This proves Liepunov's theorem. Analogously,
in terms of the Kronecker characteristics, Chetaev’'s general theorem of
instability can be proved. It must be mentioned that in this paper
Chetaev also considers the converse problem of his instability theorenm
and indicates a process of constructing a sequence of functions Vk in
the region VVk' > 0 for which there exist points in sufficiently small
neighborhoods (xs! < €, of the unperturbed motion as ¢, » O.

In Paper [ 18 ] Chetaev clarifies the algebraic nature of the Liapunov
method in the theory of stability of motion, and shows how the conditions
of stability of motion, expressed in terms of the Kronecker characteris-
tics can be connected with the problems of separating the real roots of
algebraic equations.

Let the equations of the perturbed motion have the form (11.2), where
X‘ are holomorphic functions of X4 the coefficients being continuous
functions of time ¢, mnd X (0, ..., O, t} = 0.

Assume that there exists a positive~definite function
Vizg oo x”,t);avV(xb...,z%):>0
The region of stability is assumed to be defined by the inequality

Wiry<e {¢ = const, ¢ > 0) {11.4)

Assume that for t = ty, the initial values x,, 8re selected in the
region (11.4) and that for ¢ > ¢, the function V[ x;(x,,, t), t] is de-
noted by f(t). If, further, ®(y, t) denotes a function which, by means
of the inequality ®(y, t) < 0, defines a region bounded by the contour
t=ty, t= T, y=—~c¢=~¢€, y=~ ¢, then, under the condition

X (@, v, =0

the motion under consideration ‘s(‘so' t) will remain in the region
(11.4) for t € (t;, T), i.e. it will be stable in the large (¥ < ¢).on
the finite interval of the time ty < t < T 1f, Yowever, x(o, yf', H>0,
then in the motion during the time interval from t, to T the function V¥
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assumes the value ¢ at least once. Also, a sequence of successive de-
rivatives f(') of the function can be considered, which are obtained by
virtue of the equations of the perturbed motion (11,2), and the Kronecker
characteristics y(®, yf(k'“l), f‘k’)'The basic contents of the paper con-
sist of the following: Chetaev shows that, if for a certain function V
by virtue of the differential equations (11.2) the sequence f., f°, ...,
f(h) can be constructed, which in analogy with the well-known algebraic
methods he calls a sequence of Budan, and if

$ (@, y/* D, ) =0

then, on the basis of investigating this sequence, we can make conclu-
sions about the stability of the unperturbed motion. The argument is
based on the connection between the value of the Kronecker characteristic
Y and the number of the losses in the change of the sign in the Budan
sequence when passing from ty to T. In the problem under consideration
this permits us to estimate the number of roots of V— ¢ = 0 in the in-
terval [to, T] and, consequently, in the case of the absence of the
roots, to draw conclusions about the stability of the unperturbed motion.
The unperturbed motion is stable if the number of changes of the sign in
the Budan sequence when passing from ty to tl(t1 &€ T) is for each such
value t, either a negative number or zero or an even positive number.

At the end of Paper [ 18 ] Chetaev points out the possibility of form-
ulating theorems analogous to the Liapunov theorem and corresponding to
more general cases of the Budan sequence f, f’, ..., f(t).

In Paper [ 24 ] Chetaev indicates the possibility of generalization of
a problem, connected with the problem of the center and considered
earlier by Poincaré, Liapunov and Birkhoff.

12. In Paper [58 ] Chetaev shows that the estimation problems of
approximate integration have much in common with the problems of stabil-
ity of motion. On the basis of this he develops the method of Liapunov
functions for its application to the problem of deducing the above esti-
mates. He considers the system of differential equations (11.2), where
the X‘are holomorphic functions of the real variables Xys veee X, in a
certain region D for all values of time t. Assume that by a certain method
of approximate integration an approximate solution.

T, = u, (1) (s=1,..., n) (12.1)

of Equations (11.2) is obtained which is to be compared with the true
solution £, = u,(t) + f‘. To estimate the differences f‘ Chetaev makes
use of the A, A- estimate introduced by him in the theory of stability.
Given the positive constants A, A, the approximate solution (12.1) has
the A, A-estimate if, for the initial deviations &,, ..., &,o satisfying
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the inequality floz + oeee + Enoz < A for every t larger than ty by virtue
of Equations (11.2), the condition

B+ E,2< 4
is satisfied.

In order to deduce the 4, A-estimate Chetaev, as in the case of
stability problems, considers the system of equations for the perturbed
motion

dE,

—d—t—=P31(t)El+'"+P.n(t)e-n+f| (8=1,..-. Il)
corresponding to the deviations ("perturbations®) f. of the approximate
solution u’(t) from the actual solution z’(t). and the system of equa-
tions for the first approximation

f‘ =Py WTte 4P, (06,

which he uses for the construction of a quadratic Liapunov function

V(t, fl. cees fn). Assume that the coefficients p ; are such that there
exists a Liapunov function which admits an infinitely small upper bound,
is negative-definite and the inequalities

n
v av
'Tt— + 2 (PHEH" b + PgnEn) as. > El’+ b + En’

8=1

AN

=1

hold for all t > ty in the region £;2 + ... + £ % < A. Denote by 1 the
greatest lower bound of IV[ on the sphere fi + ...+ €, 2 = A. If inside
the sphere 61 +oeee + f < A the inequality | V| < I holds and in the
region A< £,2+ ...+ f < A the inequalities | f | < A hold, then the
approximation u, (t) has the A, A-estimate. The proof of this proposition
is deduced from the results of [37], referring to the estimates of the
region of admissible initial deviations, by means of Liapunov functions,
the latter being quadratic forms.

Two examples are also considered. As is always the case with Chetaev’'s
works, besides the fact that these examples illustrate in concrete form
the general methods of the author, they also have an independent interest.
In the first example is discussed the possibility of replacing the differ-
ential equation of the ath order

d"z ¥

@0 @ oy Frr b anE =0 (12.2)

by the approximate equation of the (n — 1)th order
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&l
qam hrt ez =0

obtained from (12.2) by dropping the "inertia” term aod"z/dt". where a,

is small in comparison with the remaining coefficients. Chetaev indicates
the possibility of obtaining the A, A-estimate provided that

ap" et an =0
possesses roots with negative real parts. By the same token, in the case
of the given example, Chetaev actually demonstrated a device for invest-
igating, by the method of Liapunov, problems of the behavior of solutiomns

of a linear equation with a small parameter in the term containing the
highest order derivative.

In the second example Chetaev demonstrated the estimation method for
the approximate solution of the equation dx/dt = X(x, t), obtained by a
selection of the solution x(t) in the form of a linear expansion
agPp(x) + a;,(x) + ... in terms of the functions ¢ (t), ¢, (t), ... of a
certain family given in advance, and made important observations about
this method.

In Paper [39 ] the extension of the d’Alembert method of integrating
linear differential equations with constant coefficients to systems of
linear equations is described.

D. Applied Problems
Applied problems always occupied a central position in Chetaev’s work.

In Paper [ 10 ] Chetaev applied the Liapunov theory of stability to
the solution of the problem of lateral stability of an airplane. He ob-
tained sufficient conditions for stability. In the monograph [37 ] he
considered the problem of stability of a rectilinear flight of a neutral
airplane with respect to longitudinal motions.

A number of investigations have been concerned with the problem of
stability of the rotating motion of projectiles. Maievskii was the first
who applied approximate analysis and obtained in 1865 the well-known, and
in some sense, necessary condition for the stability of the rotating
motion of a projectile in flat trajectories.

In Papers [ 28,38,57 ] Chetsev succeeded in solving the problem of the
sufficient conditions for the stability of the rotating motion of a pro-
jectile.

Chetaev [ 28 ] considered first the rectilinear flight of a projectile,
assuming that the velocity of the motion of its center of gravity and
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the angular velocity of rotation are both constant. With these assump-
tions the problem reduces, as was shown by Maievskii, to the case of
Lagrange and Poisson of the motion of a heavy rigid body about a fixed
point. The solution depends on the location of the roots of the poly-
nomial

[ (@) =(a —au) (1 — u?) — (B — brou)? (u = cos 0)

where 0 is the angle of nutation, Chetaev showed that the angle of nuta-
tion 6 will have small deviations from its unmperturbed value provided
that all the roots of the polynomial f(u) are larger than 1 — &, where &
is a small positive number. All the roots of the polynomial f(u) will be
larger than 1 — &, 1f all the roots of the polynomial F(x) = - f(1=06- x)
are negative. For this it is necessary and sufficient that the Hurwitz
conditions be satisfied. Thus, the latter lead to the sufficient condi-
tions of the stability of the angle of nutation of the projectile.

Chetaev shows that for an ideal gun (0o = 00’ = 0) these inequalities
are satisfied simultaneously and independently .of § if the Maievskii in-
equality b2r°2 ~ 2a > 0 is satisfied.

For an actual gun the indicated inequalities determine the value of
the corresponding deviation,

Further, Chetaev studies the following cases of the rectilinear
flight of a projectile: (i) variable angular velocity of rotation and con-
stant velocity of motion of the center of gravity; (ii) variable velocity
of motion of the center of gravity and variable angular velocity of rota-
tion of the projectile.

In both cases Chetaev finds sufficient conditions of stability for
the nutation angle of the projectile.

Next, he passes to the planar case of curvilinear motion of the center
of gravity of the projectile, subject to the action of overturning and
drag couples of forces of the air pressure. In this case the stability
problem reduces to the finding of sufficient conditions in order that the
region of possible changes of the variable u, determined by a certain
equation, be inside the interval (1 - &, 1). Because of the lack of
sufficient experimental data it is difficult to select the most accept-
able majorant. Therefore, Chetaev proposed an approximate method for the
analysis of the stability conditions. The essence of this method consists
in the consideration of small sections of the trajectory as arcs of the
corresponding circles of curvature. In this way he succeeded in obtain-
ing the necessary conditions of stability.

In Paper [ 38 ] Chetaev investigates by Liapunov’s method the stabil-
ity of the flight of a projectile in a very flat trajectory The differ-
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ential equations of motion are taken in the form proposed by A.N. Krylov.
Chetaev constructs the Liapunov function in the form of a positive-
definite bundle of integrals of the equations of motion, and derives

from the conditions, when the construction of such a function V is
possible, the conditions for the stability of the unperturbed motion.
This method of constructing the Liapunov function in the form of a linear
bundle of integrals of the perturbed motion, which allowed him to solve
rigorously and completely an important concrete problem, was further de-
veloped by Chetaev, and permitted him to solve a series of important
problems on the stability of mechanical systems.

In this paper Chetaev explains the reasons for the lack of stability
in the flight of projectiles observed in practice. This lack of stability
is explained by the action, on the projectile, of dissipative forces with
complete dissipation which cannot be taken into account. By means of the
construction of a Liapunov function, Chetaev proves rigorously that in
the case under consideration the stability of the flight, being dependent
on the gyroscopic stabilization of a rotating projectile, is destroyed
by dissipative forces.

Paper [57 ] is a continuation of Chetaev’'s investigations into the
stability of the flight of a projectile, In this paper he considered the
case of a projectile, having a cavity, filled continuously with an ideal
incompressible fluid. Chetaev considered the solution of this problem to
be very important, since in a number of cases, starting from this solu-
tion, it is possible to make a sufficient provision for stability against
unforeseen negative influences of viscosity.

Chetaev gave a rigorous solution of the problem, in a nonlinear form-
ulation, of the stability of the rotating motions of a projectile with a
cavity filled continuously with an ideal fluid and being in the state of
irrotational motion without.

In Paper [ 57 ] the problem of the stability of the flight of a pro-
jectile is considered in the following cases:

(a) The cavity has the form of a circular cylinder, the axis of which
coincides with the axis of rotation of the inertia ellipsoid of the pro-
jectile (without fluid). Using the results of Zhukovskii (with the well-
known extension) Chetaev shows that the problem of the stability of the
rotational motions of such a projectile coincides with the classical
problem of the stability of the usual projectile, provided that the
inertia moments are correspondingly selected. Making use of the results
of his previous paper [ 38 ], he gives an inequality, the fulfilment of
which guarantees the stability of the rotational motions of a projectile,
having & cavity filled with a fluid, along flat trajectories.
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(b) The cavity has the form of a cylinder with a2 planar diaphragm. In
this case the ellipsoid of inertia of the projectile and the augmented
mass, representing the liquid filling of the cavity of the projectile, is
three-axial. This circumstance makes it difficult to apply to the problem
the results known for continuous rigid projectiles, where naturally, it
is assumed that the ellipsoid of inertia is an ellipsoid of revolution.
In the paper the equations of Lagrange describing the motion are stated,
and the stability of the unperturbed motion in the first approximation
is investigated. For the reduced moments of inertia A, B, C inequalities
are given, the fulfilment of which guarantees that in the first approxi-
mation the roots of the characteristic equation are purely imaginary and
the unperturbed motion is stable in the first approximation.

(¢) A circular cylindrical cavity where the diaphragms form a cross
consisting of two mutually orthogonal diametral planes. In this case,
also, the problem is reduced by Chetaev to the classical cases studied
by him earlier. On the basis of these calculations, sufficient conditions.
are given for the stability of the flight of a projectile of the type
considered.

This paper of Chetaev proved a starting-point for investigations into
the stability of the rotational motions of rigid bodies with cavities,
completely filled with a liquid or having a free surface, in general, in
a state of vortex motion.

The subject of Paper [ 38 1 is close to Paper [49 ], in which Chetaev
solves the problem of stability of rotation about the vertical of a rigid
body with a fixed point in the case of Lagrange. The stability is con-
sidered with respect to the projections p, q, r of the instantaneous
angular velocity of the body on the moving axes and the direction cosines
Y1+ Y2+ Y3 of the vertical. In this paper Chetaev demonstrated the
effectiveness of the method proposed by him for the construction of the
Liapunov functions in the form of linear bundles of first integrals:
namely, by using the known first integrals Vi =c;(i=1, 2, 3, 4) of
this problem, he constructs Liapunov’s function in the form of the
quadratic form

C(C—A
V=V + 20V,— (mgz 4 Croh) Vs + -L—-—) Vet —

—4NM+MW—AW+ﬂHJAM&+%%—
— (mgz + Croh) (a2 + B2 + 88)+ 2A €3¢ + Lo
where A is an arbitrary constant. On the basis of the Sylvester condi-
tions it is seen that if the inequality
Cryt — 4Amgz >0

is satisfied the constant A can be chosen in such a way that the function
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¥V is positive-definite. Consequently, this inequality is a sufficient
condition for the stability of rotation about the vertical.

This paper [ 49 ] by Chetaev, although only one-and-a-half pages long,
proved of great significance in mechanics. It stimulated the production
of a series of papers in which various problems of stability were solved.

Paper [60 ] is devoted to the investigation of the motion of a heavy
gyroscope in a Cardan suspension, the axis of the inner ring being
vertical. Formulating the equations of motion of the gyroscope in the
form of the Lagrange equations, and indicating their first integrals,
Chetaev reduces the problem to the inversion of hyperelliptic integral.
It follows from this solution that in the case of a heavy gyroscope in
the Cardan suspension the nutational motions play the leading role.

Further, conditions are indicated for the realization of pseudo-
regular and regular precessions of the gyroscope, and conditions are de-
rived for stability with respect to the angle of nutation of the rotation
of the gyroscope about the vertical.

The scientific works of Chetaev reflect to a considerable degree the
development of analytical mechanics during the last thirty-five years.

Chetaev often said that Galileo, Newton, Lagrange and Liapunov deter-
mined the basic stages in the history of mechanics.

The name of Liapunov is associated with the creation of the theory of
stability of motion. Up to the beginning of the twentieth century the
importance of this problem was not realized. The difficulties connected
with its statement made it accessible only to a few distinguished
scientists.With this problem Lagrange, Liapunov, Thomson, Tait, Routh,
Zhukovskii and Poincaré were concerned.

At the present time this theory has great importance in its applica-
tions. The methods of Liapunov and Chetaev are applied to the solution
of technical problems in the theory of control, guidance of flight
vehicles, construction of instruments and underwater navigation.



